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Motivation

The problem

You are an exceptionally bad driver. You want to go to the Fields
Institute, but you don’t know how to get there, and you don’t know
how to use Google Maps.
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How can you design the Toronto road system so you can get
to your desired destination the fastest?
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How can you design the Toronto road system so you can get
to your desired destination the fastest?

The idea

Model the situation using a Markov chain.
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How can you design the Toronto road system so you can get
to your desired destination the fastest?

The idea

Model the situation using a Markov chain.
Given the graph G whose vertices represent the states and
whose edges represent the possible changes, we define the
Markov chain such that no matter what vertex you are at,
you have an equal probability of transitioning to any of
the vertex’s neighbors.
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How can you design the Toronto road system so you can get
to your desired destination the fastest?

The idea

Model the situation using a Markov chain.
Given the graph G whose vertices represent the states and
whose edges represent the possible changes, we define the
Markov chain such that no matter what vertex you are at,
you have an equal probability of transitioning to any of
the vertex’s neighbors.
Look at the short-term behavior of the Markov chain to
figure out the expected time elapsed before you first reach
the state which represents the Fields Institute.
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Kemeny’s Constant

Mean First Passage Time

The mean first passage time from i to j is the expected number of
time-steps elapsed before the system reaches state j , given that it
begins in state i . It is denoted by mi ,j .
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Kemeny’s Constant

Mean First Passage Time

The mean first passage time from i to j is the expected number of
time-steps elapsed before the system reaches state j , given that it
begins in state i . It is denoted by mi ,j .

Preliminary Definition of Kemeny’s Constant

Let T be the transition matrix for a Markov chain with n states,
with stationary vector w and mean first passage times mi ,j . Define
κi =

∑n
j=1,j ̸=i wjmi ,j .
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Kemeny’s Constant

Mean First Passage Time

The mean first passage time from i to j is the expected number of
time-steps elapsed before the system reaches state j , given that it
begins in state i . It is denoted by mi ,j .

Preliminary Definition of Kemeny’s Constant

Let T be the transition matrix for a Markov chain with n states,
with stationary vector w and mean first passage times mi ,j . Define
κi =

∑n
j=1,j ̸=i wjmi ,j .

This is a constant (it does not depend on the choice of i)!
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Extremal values of Kemeny’s constant

Smallest and largest Kemeny’s constants

The smallest Kemeny’s constant on n vertices is
K(Kn) = n − 2 + 1

n , corresponding to the complete graph.
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Extremal values of Kemeny’s constant

Smallest and largest Kemeny’s constants

The smallest Kemeny’s constant on n vertices is
K(Kn) = n − 2 + 1

n , corresponding to the complete graph.
(conjecture) The maximal Kemeny’s constant on n vertices is
K(G ) = 1

54n
3 +O(n2), corresponding to a "bridge" between

two complete subgraphs.
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A Graph Theory Interlude

Let G be an undirected connected simple graph on n vertices. Let
V (G ) = {v1, . . . , vn}, with corresponding degrees d1, · · · , dn.

Degree Matrix

D :=


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn


In other words, D = diag(d)
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A Graph Theory Interlude

Let G be an undirected connected simple graph on n vertices. Let
V (G ) = {v1, . . . , vn}, with corresponding degrees d1, · · · , dn.

Adjacency Matrix

We define the adjacency matrix A entry-wise as

Ai ,j :=

{
1 if there is an edge between vi and vj

0 otherwise

In particular, this matrix illustrates what vertices are connected to
each other. Notice also that d = A · 1

Laplacian matrix

We define the Laplacian matrix L as L = D − A.
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Computing Kemeny’s constant

Second Definition of Kemeny’s Constant

Suppose that G is a connected graph on n vertices and let
T = D−1A denote its transition matrix. Suppose that 1, λ2 . . . , λn

are the eigenvalues of T . Then we can (alternatively) define
Kemeny’s constant of G as

K(G ) =
n∑

j=2

1
1 − λj
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Computing Kemeny’s constant

Second Definition of Kemeny’s Constant

Suppose that G is a connected graph on n vertices and let
T = D−1A denote its transition matrix. Suppose that 1, λ2 . . . , λn

are the eigenvalues of T . Then we can (alternatively) define
Kemeny’s constant of G as

K(G ) =
n∑

j=2

1
1 − λj

The problem (part 2)

Kemeny’s constant is much simpler to calculate for graphs that
are relatively regular (the degrees of the vertices are similar).
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Computing Kemeny’s constant

Second Definition of Kemeny’s Constant

Suppose that G is a connected graph on n vertices and let
T = D−1A denote its transition matrix. Suppose that 1, λ2 . . . , λn

are the eigenvalues of T . Then we can (alternatively) define
Kemeny’s constant of G as

K(G ) =
n∑

j=2

1
1 − λj

The problem (part 2)

Kemeny’s constant is much simpler to calculate for graphs that
are relatively regular (the degrees of the vertices are similar).
But what happens when they are not?
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Threshold Graphs

Definition
A threshold graph is a graph that can be constructed from one
vertex by repeatedly adding an isolated vertex or a dominating
vertex. We can represent a threshold graph by a binary sequence
(b1, . . . , bn) as follows:

Start with a vertex v0.
For i from 1 to n, if bi = 0 then we add an isolated vertex vi
to the graph. If bi = 1 then we add a dominating vertex vi ,
that is, we add edges joining vi to each of v0, . . . , vi−1.

We require that bn = 1, so that the threshold graph is connected.
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Threshold Graph Example

Threshold graph corresponding to the code 0011101

For example, the construction sequence (0, 0, 1, 1, 1, 0, 1) represents
the following threshold graph.
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Threshold Graph Example

Threshold graph corresponding to the code 0011101

For example, the construction sequence (0, 0, 1, 1, 1, 0, 1) represents
the following threshold graph.

v0

Random Walks on Threshold Graphs 8/30



Background Results Linear Algebra Approach Combinatorial Approach Remarks References

Threshold Graph Example

Threshold graph corresponding to the code 0011101

For example, the construction sequence (0, 0, 1, 1, 1, 0, 1) represents
the following threshold graph.

v0

v1
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Threshold Graph Example

Threshold graph corresponding to the code 0011101

For example, the construction sequence (0, 0, 1, 1, 1, 0, 1) represents
the following threshold graph.

v0

v1

v2
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Threshold Graph Example

Threshold graph corresponding to the code 0011101

For example, the construction sequence (0, 0, 1, 1, 1, 0, 1) represents
the following threshold graph.

v0

v1

v2

v3
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Threshold Graph Example

Threshold graph corresponding to the code 0011101

For example, the construction sequence (0, 0, 1, 1, 1, 0, 1) represents
the following threshold graph.

v0

v1

v2

v3

v4
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Threshold Graph Example

Threshold graph corresponding to the code 0011101

For example, the construction sequence (0, 0, 1, 1, 1, 0, 1) represents
the following threshold graph.

v0

v1

v2

v3

v4 v5
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Threshold Graph Example

Threshold graph corresponding to the code 0011101

For example, the construction sequence (0, 0, 1, 1, 1, 0, 1) represents
the following threshold graph.

v0

v1

v2

v3

v4 v5 v6
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Main Question

What threshold graph on n vertices maximizes Kemeny’s
constant?

v0

v1

v2

v3

v4v5

v6v7

v8 v9

v10

v11

v12
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A Pineapple!

Conjecture

The Threshold graph G generated by the code

C = 0 1 . . . 1︸ ︷︷ ︸
r times

0 . . . 0︸ ︷︷ ︸
n−r−2 times

1

where r ∈ {⌊
√

2n⌋ − 2, ⌊
√

2n⌋ − 1}, maximises Kemeny’s constant
for a code of length n. These are called Pineapple Graphs!
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v4v5

v6v7
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A Pineapple!

Conjecture

The Threshold graph G generated by the code

C = 0 1 . . . 1︸ ︷︷ ︸
r times

0 . . . 0︸ ︷︷ ︸
n−r−2 times

1

where r ∈ {⌊
√

2n⌋ − 2, ⌊
√

2n⌋ − 1}, maximises Kemeny’s constant
for a code of length n. These are called Pineapple Graphs!

Conjectured maximal value

From this code, we would obtain:

max
|V (G)|=n

K(G ) = n +

√
n

2
+O(1)
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Our Approaches

Two main approaches:

1 Linear Algebra Approach
2 Combinatorial Approach
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Commutativity of the Laplacians

Theorem
Suppose that G1 and G2 are threshold graphs on n vertices, and let
L1, L2 denote their respective Laplacians. Then we have that

L1L2 = L2L1
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Commutativity of the Laplacians

Theorem
Suppose that G1 and G2 are threshold graphs on n vertices, and let
L1, L2 denote their respective Laplacians. Then we have that

L1L2 = L2L1

Corollary

There exists a unitary real orthogonal matrix U which
simultaneously diagonalizes the Laplacians of all Threshold graphs
on n vertices. Its columns are common eigenvectors of all these
Laplacians.
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The U matrix

Structure and entries of U
The universal diagonalizing matrix U has a nice and useful
structure for computations of Kemeny’s constant:

eTi Uej =



0 if i + j ≥ n + 3
1√
n

if j = 1
1√

(n+1−j)(n+2−j)
if i + j ≤ n + 1

−
√

n+1−j
n+2−j if i + j = n + 2
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Resulting expressions for Kemeny’s Constant

Expression 1

Let G be a threshold graph with n vertices, m be the number of its
edges, d be its degree vector (ordered by the code), λ be the vector
of eigenvalues of its Laplacian matrix (also ordered by the code), c
be the code vector, and let U be the unitary diagonalizing matrix.
Then:

K(G ) =
1

2m

n∑
i=2

1
λi

∑
j<k

djdk(Uj ,i − Uk,i )
2
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Resulting expressions for Kemeny’s Constant

Additional definitions
For any n and 1 ≤ j ≤ n, we define the following vectors:wj =

[
0 2 4 . . . 2(j − 2) (j − 1)− (j − 1)2 0 . . . 0

]
zj =

[
0 0 0 . . . 0 j 1 . . . 1

]
, with j − 1 zeros

Expression 2 (directly from the code)

Let G be a threshold graph on n vertices. Then:

K(G ) = n − 1 −
n∑

j=2

cj
zj · c

+
n∑

j=2

(wj · c)(2m − wj · c)
2m · j(j − 1) · (zj · c)
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The Flip Transformation

Flip Transformation

Let x1 and x2 be arbitrary binary sequences and suppose that C is
the code C = x101x21. Define the flip transformation as the
mapping

C = x101x21 7→ x110x21

The inverse transformation works in the expected way: if
C = x110x2, then the ′10′ block becomes a ′01′.

Definition
A flip transformation is called a "Braess" flip if it decreases
Kemeny’s constant.
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Remaining Conjectures

Conjecture

We have the following asymptotic behavior of the extremal values
of Kemeny’s constant:

lim
n→∞

max|V (G)|=n K(G)
n

= lim
n→∞

min|V (G)|=n K(G)
n

= 1

Conjecture

Given a threshold graph G , there are no Braess flips at positions
(k , k + 1) for k ∈ ( n

10 ,
9n
10 ).
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The F Matrix

Motivation
There is a combinatorial definition of Kemeny’s constant that we
can use to approach the problem. First, we need to introduce the F
matrix.

Let G be a connected graph with vertices v1, . . . vn.

Spanning 2-Forests

We say a pair of disjoint trees (Tvi ,Tvj ) is a spanning 2-forest of G
if Tvi ∪ Tvj spans G and vi ∈ Tvi and vj ∈ Tvj
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The F Matrix

Motivation
There is a combinatorial definition of Kemeny’s constant that we
can use to approach the problem. First, we need to introduce the F
matrix.

Let G be a connected graph with vertices v1, . . . vn.

Spanning 2-Forests

We say a pair of disjoint trees (Tvi ,Tvj ) is a spanning 2-forest of G
if Tvi ∪ Tvj spans G and vi ∈ Tvi and vj ∈ Tvj

F Matrix
We can define the F matrix as F = (fi ,j)1≤i ,j≤n, where:

fi ,j = # of spanning 2-forests separating i and j
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Combinatorial Definition

Last formula for Kemeny’s Constant (we promise)

Suppose G is a connected graph on n vertices, d is its degree
vector, and τ is the number of spanning trees of G . Then we have
the formula:

K(G ) =
dTFd

4mτ
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Combinatorial Definition

Last formula for Kemeny’s Constant (we promise)

Suppose G is a connected graph on n vertices, d is its degree
vector, and τ is the number of spanning trees of G . Then we have
the formula:

K(G ) =
dTFd

4mτ

The Problem
The source of grief in this expression is the F matrix. The rest are
easily obtainable directly from the code, so not too difficult to work
with.
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Theorem
Let G be a threshold graph, and let x , v ,w ∈ V (G ) be 3 distinct
vertices. Then fx ,v ≥ fx ,w ⇐⇒ dv ≤ dw .

Example

Consider the threshold graph generated by the code 01 1
v
0
w

101

represents the following threshold graph. We have that fx ,v < fx ,w
for all x /∈ {v ,w}.

v

w
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The idea
Consider the following spanning 2-forest separating v and x , where
v and w are in the same tree. We find an injective map to the set
of spanning 2-forests separating w and x .

v

w

x

Random Walks on Threshold Graphs 20/30



Background Results Linear Algebra Approach Combinatorial Approach Remarks References

The idea
Consider the following spanning 2-forest separating v and x , where
v and w are in the same tree. We find an injective map to the set
of spanning 2-forests separating w and x . It’s the identity!

v

w

x
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The idea
Now, suppose that x and v are in different trees of the spanning
2-forest.

v

w

x
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The idea
We construct an injective map to give us a 2-spanning forest that
separates w and x .

v

w

x
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The idea
We construct an injective map to give us a 2-spanning forest that
separates w and x .
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The idea
We construct an injective map that gives us a 2-spanning forest
that separates w and x .

v

w

x

v

w

x
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Total Ordering of F

Suppose that we have a code of the form C = 0s11t1 · · · 0sk1tk then
we have the following ordering for the rows of the F matrix: Let
i ∈ V (G ) and denote by Sα = fi ,v , for v ∈ 0sα , v ̸= i and
Tα = fi ,v , for v ∈ 1tα , v ̸= i .
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Total Ordering of F

Suppose that we have a code of the form C = 0s11t1 · · · 0sk1tk then
we have the following ordering for the rows of the F matrix: Let
i ∈ V (G ) and denote by Sα = fi ,v , for v ∈ 0sα , v ̸= i and
Tα = fi ,v , for v ∈ 1tα , v ̸= i .

Ordering Case 1:

0 = fi ,i < Tk ≤ Tk−1 < Tk−2 < . . . < T1 ≤ S1 < S2 < . . . <
Sα−1 < Sα < Sα+1 < . . . < Sk
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Total Ordering of F

Suppose that we have a code of the form C = 0s11t1 · · · 0sk1tk then
we have the following ordering for the rows of the F matrix: Let
i ∈ V (G ) and denote by Sα = fi ,v , for v ∈ 0sα , v ̸= i and
Tα = fi ,v , for v ∈ 1tα , v ̸= i .

Ordering Case 1:

0 = fi ,i < Tk ≤ Tk−1 < Tk−2 < . . . < T1 ≤ S1 < S2 < . . . <
Sα−1 < Sα < Sα+1 < . . . < Sk

Ordering Case 2:

0 = fi ,i < Tk ≤ Tk−1 < Tk−2 < · · · < Tα+1 < Tα < Tα−1 <
. . . < T1 ≤ S1 < S2 < . . . < Sk
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The R Matrix

Now, given a graph G , we can consider the electrical circuit in
which each vertex of G is a node and each edge of G is a unit
resistor. From here, we can define the R matrix as

Ri ,j = Equivalent resistance between vertices i and j
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Background Results Linear Algebra Approach Combinatorial Approach Remarks References

The R Matrix

Now, given a graph G , we can consider the electrical circuit in
which each vertex of G is a node and each edge of G is a unit
resistor. From here, we can define the R matrix as

Ri ,j = Equivalent resistance between vertices i and j

Remark
Let τ denote the total number of spanning trees of G . We have
that F = τR .

Corollary

By ordering F , we also order R .
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Explicit form of R

Remark
For a graph G with the Laplacian matrix L and the resistance
matrix R , we have:

Ri ,j = (ei − ej)
TL(ei − ej)

Theorem
This allows us to directly compute R from the code using the U
matrix:

Rj ,k =
n∑

i=2

1
λi
(Uj ,i − Uk,i )

2
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Corollaries

The Moment
We define the moment of a vertex v in a graph G as

µ(G , v) = dTRei =
∑
j

djRj ,i

where d is the degree matrix and R is the resistance matrix.

Corollary: Ordering of the Moments

For the code C = 0s11t10s21t2 . . . 0sk1sk , we have the following
ordering of the moments:

µ(G , 0sk ) > µ(G , 0sk−1) > . . . > µ(G , 0s1)
≥ µ(G , 1t1) > µ(G , 1t2) . . . > µ(G , 1tk )
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Corollaries

Accessibility Index

The accessibility index can be defined as

α(G , v) = µ(G , v)− K (G )

Corollary: Ordering of Accessibility Indices

α(G , v) > α(G ,w) ⇐⇒ µ(G , v) > µ(G ,w) ⇐⇒ dv < dw
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Corollaries

Commute Times
We define the commute time as the expected length of a walk that
starts at vertex i goes through vertex j and returns to vertex i . We
denote this matrix as C .

Corollary: Ordering the Commute Times

Let G be a threshold graph and let v ,w , r ∈ V (G ) be 3 distinct
vertices. Then we have:

Cv ,w ≥ Cv ,r ⇐⇒ dw ≤ dr
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Fruit for Thought

Summary

Kemeny’s constant is difficult to work with. We suspect the
maximizing graph for a given n is a pineapple graph with
approximately

√
2n ones. We have developed combinatorial and

linear algebra tools to examine these extremal cases.

Random Walks on Threshold Graphs 28/30



Background Results Linear Algebra Approach Combinatorial Approach Remarks References

Fruit for Thought

Summary

Kemeny’s constant is difficult to work with. We suspect the
maximizing graph for a given n is a pineapple graph with
approximately

√
2n ones. We have developed combinatorial and

linear algebra tools to examine these extremal cases.

Random Walks on Threshold Graphs 28/30



Background Results Linear Algebra Approach Combinatorial Approach Remarks References

Fruit for Thought

Summary

Kemeny’s constant is difficult to work with. We suspect the
maximizing graph for a given n is a pineapple graph with
approximately

√
2n ones. We have developed combinatorial and

linear algebra tools to examine these extremal cases.

Random Walks on Threshold Graphs 28/30



References



Background Results Linear Algebra Approach Combinatorial Approach Remarks References

References I

Anđelić, Milica and Slobodan K Simić (2010). “Some notes on the
threshold graphs”. In: Discrete mathematics 310.17-18, pp. 2241–2248.
Banerjee, Anirban and Ranjit Mehatari (2017). “On the normalized
spectrum of threshold graphs”. In: Linear Algebra and its Applications 530,
pp. 288–304.
Breen, Jane, Emanuele Crisostomi, and Sooyeong Kim (2022). “Kemeny’s
constant for a graph with bridges”. In: Discrete Applied Mathematics 322,
pp. 20–35.
Brouwer, Andries E and Willem H Haemers (2011). Spectra of graphs.
Springer Science & Business Media.
Butler, Steve, Fan Chung, et al. (2006). “Spectral graph theory”. In:
Handbook of linear algebra, pp. 24–25.
Diagonalization by a unitary similarity transformation (2011). url:
http://scipp.ucsc.edu/~haber/ph116A/diag_11.pdf.

Random Walks on Threshold Graphs 29/30

http://scipp.ucsc.edu/~haber/ph116A/diag_11.pdf


Background Results Linear Algebra Approach Combinatorial Approach Remarks References

References II

Faught, Nolan, Mark Kempton, and Adam Knudson (2022). “A
1-separation formula for the graph Kemeny constant and Braess edges”. In:
Journal of Mathematical Chemistry 60.1, pp. 49–69.
Hammer, Peter L and Alexander K Kelmans (1996). “Laplacian spectra
and spanning trees of threshold graphs”. In: Discrete Applied Mathematics
65.1-3, pp. 255–273.
Hu, Yuxiang and Steve Kirkland (2019). “Complete multipartite graphs and
Braess edges”. In: Linear Algebra and its Applications 579, pp. 284–301.
Kirkland, Steve (2016). “Random walk centrality and a partition of
Kemeny’s constant”. In: Czechoslovak Mathematical Journal 66,
pp. 757–775.
Mishra, Ankit, Ranveer Singh, and Sarika Jalan (2022). “On the second
largest eigenvalue of networks”. In: Applied Network Science 7.1, p. 47.
Sheskin, Theodore J (1995). “Computing mean first passage times for a
Markov chain”. In: International Journal of Mathematical Education in
Science and Technology 26.5, pp. 729–735.

Random Walks on Threshold Graphs 30/30


	Background
	Results
	Linear Algebra Approach
	Combinatorial Approach
	Remarks
	References

